Monte Carlo simulations of
densely packed biopolymers

Outline:

Motivation: dense biopolymers are ubiquitous. Prototypical
example: DNA packaged inside a viral particle.

Implications of self- and mutual polymer entanglement?

Methodological aspects: Monte Carlo techniques

Lund 2012 cristian.micheletti@sissa.it



Generalities on DNA packaging

Eukaryotes: meters of DNA in a 10 micron
size nucleus

Bacteria: mm of DNA in a micron size cell

Phages microns of DNA in a 50 nm capsid

In all cases genome organisation involves a

Jiang et al. . . .
Nature 2006 high degree of spatial confinement.
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DNA packaging time: 5.5mins




Spooling model,

Richards et al, JMB 1973 Fold model,

Richards et al. JMB 1973

... disordered packing etc.



Imaging studies of DNA in bacteriophages

Phages microns of DNA in a 50 nm capsid

Cryo-EM imaging on bacteriophage €15
indicate that the outer layers of dsDNA have
an inverse spool arrangement

e

Jiang et al. Nature 2006 Richards et al
JMB 1973



Self-avoidance and bending rigidity

Growth of a flexible self-avoiding chain in a small sphere (Lp >> R)

See also:
Harvey and coworkers: Biopolymers 73 (2004); Biophys. Chem (2002)

Marenduzzo and CM. J. Mol. Biol. 330 (2003)
Tzill et al. Biophys. J. 84 (2003)



Packing a stiff chain
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LaMarque et al., Biopolymers (2004);

Arsuaga et al., Biophys. Chem. (2002). Harvey and coworkers: Biopolymers 73 (2004);

Biophys. Chem (2002)
Marenduzzo and CM. J. Mol. Biol. 330 (2003)
Tzill et al. Biophys. J. 84 (2003)



DNA length: 10 kb ~ 3.4 um

Capsid diameter: ~ 45 nm

Knots as a probe of DNA organization

Arsuaga et al. PNAS (2005)

3, & TwistKncts  Phage Knols

4]® \\0__._ # Unknots

\ <5%
"0 N\ - -

Fig. 2. |dentification of spectic inot types by their position in the gel The
Ol wdodity at low waltage of indmdaal knot populationd esoied by two
dmonsional electrophorein (Right] is compared wath the gel velodty at low
voltage of twist knots (34, &0 52 64 and 71 of & 10-kb recked plasmid (Center)



&
P4 bacteriophage

DNA length: 10 kb ~ 3.4 um

Capsid diameter: ~ 45 nm

Ref: Arsuaga et al. PNAS 2005
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Knots as a probe of DNA organization
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m Some of these
\/) knots occur in
\) proteins too!

see Wallin et al.
J. Mol. Biol. 2007



Model for circular DNA
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Monte Carlo sampling

MC is used to produce a sequence of system snapshots sampled with

canonical weight. Key prescriptions:

(1) at each time step obtain a trial system configuration by changing the current
one using random moves.

(2) Accept the trial configuration or retain the current one using a suitable rule.
The accepted/retained configuration becomes the new system configuration.

(1) Monte Carlo moves for polymer chains
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Monte Carlo sampling

MC is used to produce a sequence of system snapshots sampled with
canonical weight. Key prescriptions:

(1) at each time step obtain a trial system configuration by changing the current
one using random moves.

(2) Accept the trial configuration or retain the current one using a suitable rule.
The accepted/retained configuration becomes the new system configuration.

(1) Monte Carlo moves for polymer chains
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Monte Carlo sampling

MC is used to produce a sequence of system snapshots sampled with

canonical weight. Key prescriptions:
(1) at each time step obtain a trial system configuration by changing the current

one using random moves.
(2) Accept the trial configuration or retain the current one using a suitable rule.
The accepted/retained configuration becomes the new system configuration.

(2) Acceptance-rejection rule

We wish that in the long run, configurations are picked with canonical probability
—EI)/KgT
P.,(T) oc e B0/ Kz

This condition is satisfied if the rates of going from configuration A to B (and vice
versa) obey the detailed balance prescription:

Poy(Ta)Wap = Pey(I'p)Wp_a



Monte Carlo sampling

MC is used to produce a sequence of system snapshots sampled with
canonical weight. Key prescriptions:
(1) at each time step obtain a trial system configuration by changing the current

one using random moves.
(2) Accept the trial configuration or retain the current one using a suitable rule.
The accepted/retained configuration becomes the new system configuration.

(2) Acceptance-rejection rule

We wish that in the long run, configurations are picked with canonical probability
—EI)/KgT
P.,(T) oc e B0/ Kz

This condition is satisfied if the rates of going from configuration A to B (and vice
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Wa_B . PeCI(FB) _ e Fa/Kp T _ 6_(EA—EB)/KBT

WB—)A B Peq(FA) G_EB/KB I




Monte Carlo sampling

MC is used to produce a sequence of system snapshots sampled with
canonical weight. Key prescriptions:
(1) at each time step obtain a trial system configuration by changing the current
one using random moves.
(2) Accept the trial configuration or retain the current one using a suitable rule.
The accepted/retained configuration becomes the new system configuration.

(2) Acceptance-rejection rule

We wish that in the long run, configurations are picked with canonical probability

Pey(I') e P/ Kp T

This condition is satisfied if the rates of going from configuration A to B (and vice
versa) obey the detailed balance prescription:

Wasp e BalKnT

Wpoa e Bo/KoT

1 if Fp < Fqy
WA—)B — 6_(EB_EA)/KBT

otherwis




Monte Carlo sampling

MC is used to produce a sequence of system snapshots sampled with

canonical weight. Key prescriptions:

(1) at each time step obtain a trial system configuration by changing the current
one using random moves.

(2) Accept the trial configuration or retain the current one using a suitable rule.
The accepted/retained configuration becomes the new system configuration.

(2) Acceptance-rejection rule
We wish that in the long run, configurations are picked with canonical probability

Pey(I') e P/ Kp T

This condition is satisfied if the rates of going from configuration A to B (and vice
versa) obey the detailed balance prescription:

WA—>B Peq (FB) W .
= — 1111n
WB—)A Peq (FA) A—=B

(17 6_(EB_EA)/KB T)




Monte Carlo sampling

MC is used to produce a sequence of system snapshots sampled with

canonical weight. Key prescriptions:

(1) at each time step obtain a trial system configuration by changing the current
one using random moves.

(2) Accept the trial configuration or retain the current one using a suitable rule.
The accepted/retained configuration becomes the new system configuration.

Cons:
- No viable information about system kinetics. However, if one uses only local
moves, then MC trajectories can be a viable stochastic system dynamics.

Pros:

- Efficient exploration of phase space

- Information about system equilibrium properties
- Potential energy needs not be differentiable

- Constraints can be efficiently implemented



Self-avoidance and bending rigidity

Growth of a flexible self-avoiding chain in a small sphere (Lp >> R)

See also:
Harvey and coworkers: Biopolymers 73 (2004); Biophys. Chem (2002)

Marenduzzo and CM. J. Mol. Biol. 330 (2003)
Tzill et al. Biophys. J. 84 (2003)



Advanced sampling techniques:
parallel tempering

VWV

KpT { > T

Sampling the relevant phase space is impractical due to large (free) energy barriers.

How can we overcome the problem?



Advanced sampling techniques:
parallel tempering

Run several MC trajectories at additional (higher and lower) temperatures
and occasionally propose swaps between systems at nearby temperatures.

T1 S

12

time




Advanced sampling techniques:
parallel tempering

Run several MC trajectories at additional (higher and lower) temperatures
and occasionally propose swaps between systems at nearby temperatures.

T1

I' A I' B Q: With what probability
should we accept the
swap?

T2 T i



Advanced sampling techniques:
parallel tempering

Run several MC trajectories at additional (higher and lower) temperatures
and occasionally propose swaps between systems at nearby temperatures.

T1
I' A I' B Q: With what probability
should we accept the
swap?
T2
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Stochastic sampling of compact rings

= 3_.
Use Metropolis scheme to sample rings with weight w = € P R=—BH

Rings are deformed by crankshaft moves
Occasional swapping of rings at various values of P (Tesi et al. J, Stat. Phys 1996)

Recover canonical statistics by undoing pressure bias (Ferrenberg and Swendsen,
PRL 19809)
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Maximum packing: R ~ 50nm




Confinement and knot complexity
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Simple knots

—_— O

Compositas

Unconstrained case:

Knot Probability Experiment
type ()

3 3.8% 3.5%

4 0.46% 0.44%

5 0.27% 0.25%

*1M NaCl
Rybenkov et al. PNAS 1993



Packing of half P4 genome (4.7Kb)

[experiment: Trigueros and Roca BMC biotech. 2007]

1. No order at surface
2. No bias in favour of torus and chiral knots

., &3

S0
40 '
w Experiment
Configuration obtained with 30 “ Model
“growth” simulations (kink- 20
jump dynamics) ,' ‘
= j
0
31 44 o1 D2

What is the missing ingredient?



adapted from R. Podgornik, Taiwan lectures
mg/mi 15 160 380 440 870 1055

blue phases cholesteric hexatic Pelta et al.
Biophys. J. 1996

Estimated P4 DNA density (packaging model of Purohit et al. PNAS 2003)
Full genome (10kb) : 270 mg/ml
Half-genome (4.7kb): 200 mg/ml



Cholesteric phases of DNA

|
S/ ) DNA strands form a preferential angle
1 LA LL (steric hindrance + electrostatics)
I\
& ’\ N ’,“3" Leforestier et al. C. Rendu Chimie (2008)
ot - ‘"*‘W~:"f;;;lg’_ ¢ Kornishev et al. Phys. Rev. Lett. 2007,
| e j Ferrarini et al.d Chem. Phys (2005);
| g2t/
o el AN

Introduce additional cholesteric potential (besides chain connnectivity, bending energy

and screened electrostatic interactions): V = k(oz _ 040)2 f(dij>
Q0 ~ 10
P f(d)
k ~ KBT

o

5nm d







Ordering effect

—— -’"‘ o— Marenduzzo et al., PNAS, 2009



Knot spectrum (atter circularization)
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Bias towards torus and chiral knots over a good range of parameters



Potential strength tuned to reproduce
experimental data on full P4 genome

“ Exper mant Arsuaga et al. PNAS (2005)
= Model Marenduzzo et al. PNAS (2009)

Model pargmeters
g — 1

k=10 KT

Knots are delocalised; on average they occupy 60% of the chain.




Ejection of entangled DNA
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... and one more thing:
thermodynamic reweighting

MC simulations at a given temperature can give us equilibrium properties at
different (nearby) temperatures!

R |

A

time :
MC time series histogram E

The height of the ith bin is proportional to:



... and one more thing:
thermodynamic reweighting

MC simulations at a given temperature can give us equilibrium properties at
different (nearby) temperatures!
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MC time series histogram E

The height of the ith bin is proportional to:

- N, the total number of MC snapshots . - _—E;/T
- exp(-Ei/T), the canonical weight hz o< N W’L €

- Wi, The number of microstates with energy Ei



... and one more thing:
thermodynamic reweighting

MC simulations at a given temperature can give us equilibrium properties at
different (nearby) temperatures!
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... and one more thing:
thermodynamic reweighting

MC simulations at a given temperature can give us equilibrium properties at
different (nearby) temperatures!
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Summary

- Monte Carlo as a general tool to characterize equilibrium properties of
systems

- Advanced sampling techniques: Parallel tempering
- Thermodynamic Reweighting techniques

Application to a challenging system: densely packed DNA

Useful references (based on my own taste...):

« ltzykson & Drouffe, Statistical field theory

« Newman and Barkema, Monte Carlo methods in Statistical Physics
« K. Binder, Lecture notes of Varenna summer school

* + material available at http://people.sissa.it/~michelet/Lund
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