Giant planet formation by tiny pebbles

COMPUTE Retreat, Hotel ÅhusStrand 21 August 2012

Michiel Lambrechts Supervised by Anders Johansen

Lund Observatory, Department of Astronomy and Theoretical Physics

Theoretical Astrophysics in Lund

How unusual is our solar system? How do black holes form and grow? What powers gamma-ray bursts and supernovae? ...

Melvyn B. Davies

Anders Johansen

Ross Church

Chao-Chin Yang

Serge Nzoke

Alexey Bobrick^{*}

Kalle

Michiel Lambrechts

Katrin Ros *

*Check out their posters!

Observational constraints on gas giants

Gas giants:

- exoplanets (exoplanet.eu)
- born in a gas disc
- have a rocky core (10 M_{\oplus})
- like dusty environments
- form fast ($\lesssim 10^6 \text{ yr}$)
- and at wide orbital separation (> 10 AU)

The protoplanetary disc ≈ 100 AU

Saturn

Observational constraints

Gas giants:

- exoplanets (exoplanet.eu)
- born in a gas disc
- have a rocky core (10 M_{\oplus})
- like dusty environments
- form fast ($\lesssim 10^6 \text{ yr}$)
- and at wide orbital separation (> 10 AU)

HR8799 planetary system (Marois et al, 2010)

Observational constraints

Gas giants:

- exoplanets (exoplanet.eu)
- born in a gas disc
- have a rocky core (10 M_{\oplus})
- like dusty environments
- form fast ($\lesssim 10^6 \text{ yr}$)
- and at wide orbital separation (> 10 AU)

LkCa 15 a: an ≈ 1 Myr-old planet (Kraus & Ireland, 2011)

Core accretion scenario (Pollack et al., 1996)

- 1. grow a solid core
- 2. when $v_{\rm esc} = c_{\rm s}$ slow envelope attraction to $M_{\rm env} \approx M_{\rm core} \approx 10 M_{\oplus}$
- 3. runaway growth of the envelope $>100~M_\oplus$

within $\approx 1 \text{ Myr} \dots$

Planetesimals and pebbles

The building blocks:

- planetesimals: size \sim km (Rafikov, 2004 & Dodson-Robinson, 2009) OR
- Pebbles: size $\sim \text{cm} \rightarrow \text{feel gas drag}$
 - friction time: $t_{\rm f} = v/\dot{v} \propto R$
 - a "natural" size (see also poster by Katrin Ros)

Lutetia

Pebbles

Timescales

Core growth with planetesimals is slow.

The Pencil Code

- Eulerian grid code 6th order central finite difference in space 3rd order Runge-Kutta in time
- Ideal for compressible hydrodynamics (modular general purpose code)

- Code is open source. Check it out at http://www.nordita.org/pencil-code/

Pebble accretion is fast: Pencil Code results

 $\dot{M}_{
m pebbles} \propto R_{
m H}$ with $R_{
m H} \approx 100 \times$ capture radius for planetesimals! (when $t_{
m g} \approx t_{
m f}$)

Conclusion: pebble accretion is incredibly rapid.

Planet formation

A time line (?)

- a pebble clumping event (Johansen et al, 2007, Nature)
- rapid pebble accretion
- gas giant formed + migrate
- no gas left in disc, only gravity
 Davies M. B., Malmberg D.,
 - Church R., Jansson K, Carrera D., ...
- final form of the solar system . . .

Commercial Break: Källén seminar for breakthrough discoveries

- organised by ATP+Physics PhD students deadline speaker suggestion: 07/09/2012
- funding for intercontinental flight + accommodation
 - 2013-2014 agenda will be at http://www.astro.lu.se/~michiel/kallen

Thank you for your attention.

The Pencil Code: parallelization

From Wlad Lyra.

