What can we do with a bunch of spheres?

Coarse Grained Models & Applications on Protein Systems

> Anıl Kurut COMPUTE Retreat 21.08.2012

Let's model billiard balls

Hard

Spheres

d

- Two spheres
- Simulation box with hard walls
- Interactions:
 - feel each other when they collide
 - no interactions
 when they are apart
 - collusions with boundary

Let's modify the balls

- Make the balls out of plastic
 - They will be softer
- In molecular world:
 - They have short ranged attraction

$$U(r) = 4\epsilon \left\{ \left\{ \frac{d}{r} \right\}^{12} - \left\{ \frac{d}{r} \right\}^6 \right\}$$

Make them charged

$$U_{charge}(r) = \frac{q_1 q_2}{4\Pi \epsilon_0 r}$$

- 2 spherical particles: Solution with pen and paper
- If they were many like in billiard board: Explore all possible configurations
- If they had orientation dependent interaction: Explore all possible orientations

Require Numerical solutions = Simulations !

Monte Carlo Simulations

 Experimental measurements: Time averaging

Newton Equations of Motions

 Monte Carlo simulations: Ensemble averaging

Metropolis Monte Carlo Algorithm

- Pick a random particle
- Move it to a random position
- Calculate the difference in total energy
 - by summing all pair interactions
 - calculation time is proportional to N^2
- Generate a random number R between 0 and 1

• If R < $e^{-\frac{\Delta U(r)}{kT}}$ \longrightarrow Accept the new configuration

otherwise move it back

More interesting systems: Proteins

 Sequence of building blocks called amino acids bound to each other by peptide bonds

Horse shoe shaped protein: 314 amino acids 2336 particles

Globular protein: 123 amino acids 990 particles Chain like protein: 11 amino acids 250 particles

Proteins in solution

Proteins + water + ions =67628 particles

Number of Particles in the system needs to be reduced to study binding of bigger proteins, protein self assembly, phase separation COARSE GRAINED

MODELS

What is coarse graining?

Effect of charge anisotropy on phase separation of proteins

1 Step: Development of proper model = FAST+DETAILED enough

2 Step: Play with MC simulations =

Play ground: pH, salt concentration, mutations on protein structures

liquid phase

Protein-protein binding

Need all amino acids

to capture the ones involved in the binding

Snapshot from simulation

Green: Isodensity map

MODEL

Flexible chain: Harmonic bonds between each adjacent particles Charges are allowed to fluctuate Implicit: Surface charges, ions and water molecules

Conclusion

- Determine essential physics
- Develop proper model: Fast and detailed enough
 - Fast = Decrease the number of particles
 - **Detailed =** Capture essential physics
- Verify the coarse grained model:
 - Compare with more detailed models and experiments
- Let the simulations run !

Thank you for your attention

Any implicit questions?