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Numerical Analysis

“Numerical analysis aims to construct and analyze
quantitative methods for the automatic computation of
approximate solutions to mathematical problems.”

— Gustaf Soderlind
“Numerical analysis is the area of mathematics and
computer science that creates, analyzes, and implements
algorithms for solving numerically the problems of
continuous mathematics.”

— Kendall E. Atkinson
“Numerical analysis is the study of algorithms for the
problems of continuous mathematics.”

— Lloyd N. Trefethen



Numerical Analysis topics

Numerical linear algebra

Solving systems of equations
Computing eigenvalues
Matrix factorizations, functions of matrices

Approximation theory
Interpolation, extrapolation
Numerical integration

Optimization
Min/max of real-valued functions
Possibly with constraints

Differential equations
ODEs, PDEs
Integral equations
DAEs, SDEs, DDEs



Research areas at Numerical Analysis in Lund

Main focus: Differential equations

We work with

o Adaptivity (Gustaf Séderlind)
e DAESs (Claus Fiihrer)

|\/|u|tistep methods (Carmen Arévalo)

Integral equations (Johan Helsing)

Real—t|me slmulat|0n (Christian Andersson)

Spllttlng methOdS (Eskil Hansen, Erik Henningsson, Tony Stillfjord)

and more



My work: Laplacian example

%u( ) = Au(t,x), xe€[0,1], tel0,1]

u(t,0) =u(t,1)=0
u(0,x) = f(x)

t

X

Easy and fast to solve by Fast Fourier Transform (FFT) techniques



But what about this?

%u(t,x) = Au(t,x)+g(u), x€][0,1], te]0,1]
u(t,0) =u(t,1)=0
u(0,x) = f(x)

g(u) non-linear, but “nice”, non-stiff

FFT-techniques do not work (or complicated and specific)



A typical problem

Au(t) + Bu(t), te€]0,1],

=
~
A
~
~
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Abstract evolution equation

Space dependency and boundary conditions hidden in the
operators A and B

Full problem difficult/expensive

u(t)=Au(t)

u(t) = Bu(t) easy/cheap

d
da
Sub-problems ¢
dt



Splitting methods: Lie splitting

Iterate between the subproblems

%v(t) = Av(t), te][0,At], %W(t) = Bw(t), te[0,At],
— v ~ v(At) — wy ~ w(At)
U= Au+ Bu

up = wy =~ u(At)



Splitting methods: Lie splitting

Iterate between the subproblems

%v(t) = Av(t), te][0,At], %W(t) = Bw(t), te[0,At],
— vy &~ v(At) — wy &~ w(At)
U= Au+ Bu

uy = wy ~ u(2At)



Splitting methods: Lie splitting

Iterate between the subproblems

%v(t) = Av(t), te][0,At], %W(t) = Bw(t), te[0,At],
v(0) = wp_1 w(0) = v,
— v, ~ v(At) — w, ~ w(At)
U= Au+ Bu

up = wp ~ u(nAt) = u(T)



Splitting methods: convergence

For bounded operators A and B (think fixed spatial discretization),
Use Taylor expansion to prove convergence with order

llup — u(nAt)|| < C(At)P

But C — oo as discretization becomes finer !
Taylor expansion does not work for unbounded operators

Until recently: Only order theory for classical splitting methods
(i.e. for bounded operators)



In our group (Eskil Hansen)

Under certain conditions (linear maximal dissipative operators,
etc.):

Order is preserved for classical splitting methods:

l|lun — u(nAt)|| < C(At)P

C independent of spatial discretization mesh width!
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IMEX Euler

Au(t) + Bu(t), te][0,1],

u(0) =7

=
=
A
-
N—r
I

A (non-linear) unbounded dissipative operator, like A(|u|"u)
B Lipschitz continuous operator

Solve %u(t) = Au(t) by Implicit Euler
Solve L u(t) = Bu(t) by Explicit Euler

— Same order as Implicit Euler for full problem (< 1)

(Eskil Hansen and Tony Stillfjord 2012)
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Delay Differential Equations

Now trying to prove similar results for splitting DDEs, for example

%u(t):Au(t)—l—u(t—l), te [07 1]3
u(0) =7
u(t) =f(r), 7€[-1,0]
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Thank you
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