Lund University

Denna sida på svenska This page in English

Introduction to Deep Learning


HT2021, 4.5 ECTS

Course description

Recent development in machine learning have led to a surge of interest in artificial neural networks (ANN). New efficient algorithms and increasingly powerful hardware has made it possible to create very complex and high-performing ANNs. The process of training such complex networks has become known as deep learning and the complex networks are typically called deep neural networks.

The aim of this course is to introduce students to common deep learnings architectues such as multi-layer perceptrons, convolutional neural networks and recurrent models such as the LSTM. Basic concepts in machine learning till also be introduced. The course consists of a series of lectures and computer exercises. The programming environment will be python (Jupyter notebook) together with the deep learning libraries Keras and Tensorflow.

The course will be given in flipped classroom mode, with students watching recorded lectures together with online quiz meetings with discussions.


  • Programming: Basic knowledge.
  • Mathematics: Calculus in one and several variables and linear algebra
  • Standard desktop/laptop computer and internet connection


27 Sept10:15-12:00Introduction to ML and DL
1 Oct14:15-15:00The MLP-1
4 Oct10:15-12:00The MLP-2
7 Oct14:15-15:00CNN, part 1
8 Oct14:15-15:00CNN, part 2
11 Oct10:15-12:00Autoencoder and GAN
14 Oct14:15-15:00Recurrent networks
22 Oct13:15-17:00Presentations of project work
25 Oct 9:15-17:00Presentations of project work

All teaching events will be online.


Course organiser: Mattias Ohlsson

Teachers: Mattias Ohlsson and Patrik Edén


Written report and oral presentation of a deep learning computer project


Registration closes on the 19th September 2021 (hard deadline).

Registration is now closed.



Page Manager: